Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.201702052

Multicolor, Fluorescent Supercapacitor Fiber

Meng Liao, Hao Sun, Jing Zhang, Jingxia Wu, Songlin Xie, Xuemei Fu, Xuemei Sun, Bingjie Wang,* and Huisheng Peng*

Supporting Information

Experimental Section

Preparation of multi-walled carbon nanotube array. Multi-walled carbon nanotube (MWCNT) array was synthesized by chemical vapor deposition. In a typical synthesis, Fe (1.2 nm)/Al₂O₃ (5 nm) on a silicon wafer was used as the catalyst, ethylene was used as carbon source with a flowing rate of 90 sccm, and a mixture of Ar (480 sccm) and H₂ (30 sccm) was used as the carrier gas. The growth was made at 750°C, and the thickness of spinnable MWCNT array was appropriately 200 μ m. The CNT sheets were directly drawn from the same spinnable MWCNT array with a width of 10 mm.

Characterization. The morphologies of the fluorescent fiber electrodes and fluorescent supercapacitor fibers were characterized by scanning electron microscopy (SEM, Hitachi, FE-SEM S-4800 operated at 1 kV). Electrochemical tests including galvanostatic charge–discharge curves and cyclic voltammograms of the supercapacitor fibers were conducted on a CHI 660D electrochemical workstation. The cyclic stability was traced on an Arbin electrochemical station (MSTAT-5 V/10 mA/16Ch). The spectrum was measured on a miniature fiber optic spectrometer (Idealoptics PG2000-pro, China) installed on an optical microscopy (Olympus BX51, Japan). The optical photographs were captured by a digital camera (SONY A6000, Japan).

Color	Standard Wavelength (nm)					Spectrum Peak (nm)		
Violet	380 - 450					448		
Blue	450 - 495					462		
Green	495 - 570					520		
Yellow	570 - 590					543		
Orange	590 - 620					603		
Red	620 - 750						646	
980 V	450	В	495	G	570 590	620 O	R	750

Table S1. Comparison of the spectrum peak values from the unpackaged fiber electrodes of different colors with correlated standard visible light wavelength ranges.^[S1]

Figure S1. Schematic illustration to the components of the fluorescent supercapacitor fiber.

Figure S2. a) Cross-sectional SEM image of the fluorescent fiber. **b)** Higher magnification of the region marked with a red rectangle in **a**.

Figure S3. a) Spectrum of the orange fiber electrode over 5000 bending cycles with a bending angle of 180°. **b)** Correlated spectrum variation of intensity peak value in **a**.

Figure S4. Spectrum obtained with increasing dye dispersion concentrations from 0 to 60 mg mL⁻¹.

Figure S5. a) Galvanostatic charge-discharge curves of fluorescent supercapacitor fibers incorporated with increasing dye dispersion concentration from 0 to 60 mg mL⁻¹. Current density, 10 mA cm⁻³. b) Dependence of specific capacitance on the incorporated dye dispersion concentration.

Figure S6. Galvanostatic charge-discharge curve of a fluorescent supercapacitor fiber based on MWCNT/PEDOT composite at increasing current densities from 10 to 100 mA cm^{-3} .

Figure S7. Spectrum variation with and without the incorporation of PEDOT:PSS.

Figure S8. Schematic illustrations of the integrated configurations and corresponding galvanostatic charge-discharge curves of the fluorescent supercapacitor fibers. **a**, **b**) Increased power capacities by connection in parallel. **c**, **d**) Increased voltage by connection in series.

Figure S9. Spectrum peak value variation of an unpackaged green fluorescent supercapacitor fiber under bending with increasing bending angles from 0 to 180°.

Figure S10. Capacitance variation of a fluorescent supercapacitor fiber under bending with increasing bending angle from 0 to 180° . Current density, 10 mA cm⁻³.

References for the Supporting Information

[S1] J. F. Kennedy, A. Kaczmarek, Carbohyd. Polym. 2007, 67, 648.